Change-Base Formula:

Let *a*, *b*, and *x* be positive real numbers such that $a \neq 1$ and $b \neq 1$. Then $\log_a x$ can be converted to a different base as follows.

Base b	Base 10	Base e	
$\log_a x = \frac{\log_b x}{\log_b a}$	$\log_a x = \frac{\log x}{\log a}$	$\log_a x = \frac{\ln x}{\ln a}$	

Ex 1: Evaluate each of the following, using the change-of-base formula with common logs. Approximate to four decimal places.

a. log₃ 16

b. log₅ 22

Ex 2: Evaluate each of the following, using the change-of-base formula with natural logarithms. Approximate to four decimal places.

a. log₃ 16

b. log₅ 22

Properties of Logarithms			
Let <i>a</i> be a positive number such that $a \neq 1$, and let <i>n</i> be a real number. If <i>u</i> and <i>v</i> are positive real numbers, then the following properties are true.			
	Logarithm with Base a	Natural Logarithm	
1. Product Property:	$\log_a(uv) = \log_a u + \log_a v$	$\ln(uv) = \ln u + \ln v$	
2. Quotient Property:	$\log_a \frac{u}{v} = \log_a u - \log_a v$	$\ln\frac{u}{v} = \ln u - \ln v$	
3. Power Property:	$\log_a u^n = n \log_a u$	$\ln u^n = n \ln u$	

Ex 3: Write each logarithm in terms of ln2 and ln5.

a.
$$\ln 10$$
 b. $\ln \frac{5}{32}$

Ex 4: Find the exact value of each expression without using a calculator.

a.
$$\log_7 \sqrt[5]{7}$$
 b. $\ln e^{12} + \ln e^{5}$

Ex 5: Expand each logarithmic expression.

a. $\log 3x^2y$

b.
$$\ln \frac{\sqrt{4x+1}}{8}$$

Ex 6: Condense each logarithmic expression.

a.
$$\frac{1}{3}\log x + 5\log(x-3)$$

b.
$$4\ln(x-4) - 2\ln x$$

c.
$$\frac{1}{5}[\log_3 x + \log_3(x-2)]$$